9,716 research outputs found

    Impact of multiscale dynamical processes and mixing on the chemical composition of the upper troposphere and lower stratosphere during the Intercontinental Chemical Transport Experiment–North America

    Get PDF
    We use high-frequency in situ observations made from the DC8 to examine fine-scale tracer structure and correlations observed in the upper troposphere and lower stratosphere during INTEX-NA. Two flights of the NASA DC-8 are compared and contrasted. Chemical data from the DC-8 flight on 18 July show evidence for interleaving and mixing of polluted and stratospheric air masses in the vicinity of the subtropical jet in the upper troposphere, while on 2 August the DC-8 flew through a polluted upper troposphere and a lowermost stratosphere that showed evidence of an intrusion of polluted air. We compare data from both flights with RAQMS 3-D global meteorological and chemical model fields to establish dynamical context and to diagnose processes regulating the degree of mixing on each day. We also use trajectory mapping of the model fields to show that filamentary structure due to upstream strain deformation contributes to tracer variability observed in the upper troposphere. An Eulerian measure of strain versus rotation in the large-scale flow is found useful in predicting filamentary structure in the vicinity of the jet. Higher-frequency (6–24 km) tracer variability is attributed to buoyancy wave oscillations in the vicinity of the jet, whose turbulent dissipation leads to efficient mixing across tracer gradients

    A Versatile and Reproducible Multi-Frequency Electrical Impedance Tomography System

    Get PDF
    A highly versatile Electrical Impedance Tomography (EIT) system, nicknamed the ScouseTom, has been developed. The system allows control over current amplitude, frequency, number of electrodes, injection protocol and data processing. Current is injected using a Keithley 6221 current source, and voltages are recorded with a 24-bit EEG system with minimum bandwidth of 3.2 kHz. Custom PCBs interface with a PC to control the measurement process, electrode addressing and triggering of external stimuli. The performance of the system was characterised using resistor phantoms to represent human scalp recordings, with an SNR of 77.5 dB, stable across a four hour recording and 20 Hz to 20 kHz. In studies of both haeomorrhage using scalp electrodes, and evoked activity using epicortical electrode mats in rats, it was possible to reconstruct images matching established literature at known areas of onset. Data collected using scalp electrode in humans matched known tissue impedance spectra and was stable over frequency. The experimental procedure is software controlled and is readily adaptable to new paradigms. Where possible, commercial or open-source components were used, to minimise the complexity in reproduction. The hardware designs and software for the system have been released under an open source licence, encouraging contributions and allowing for rapid replication

    EIT-MESHER – Segmented FEM Mesh Generation and Refinement

    Get PDF
    EIT-MESHER (https://github.com/EIT-team/Mesher) is C++ software, based on the CGAL library, which generates high quality Finite Element Model tetrahedral meshes from binary masks of 3D volume segmentations. Originally developed for biomedical applications in Electrical Impedance Tomography (EIT) to address the need for custom, non-linear refinement in certain areas (e.g. around electrodes), EIT-MESHER can also be used in other fields where custom FEM refinement is required, such as Diffuse Optical Tomography (DOT)

    Hyperspherical Description of the Degenerate Fermi Gas: S-wave Interactions

    Full text link
    We present a unique theoretical description of the physics of the spherically trapped NN-atom degenerate Fermi gas (DFG) at zero temperature based on an ordinary Schr\"{o}dinger equation with a microscopic, two body interaction potential. With a careful choice of coordinates and a variational wavefunction, the many body Schr\"{o}dinger equation can be accurately described by a \emph{linear}, one dimensional effective Schr\"{o}dinger equation in a single collective coordinate, the rms radius of the gas. Comparisons of the energy, rms radius and peak density of ground state energy are made to those predicted by Hartree-Fock (HF). Also the lowest radial excitation frequency (the breathing mode frequency) agrees with a sum rule calculation, but deviates from a HF prediction

    Entropic uncertainty measures for large dimensional hydrogenic systems

    Get PDF
    The entropic moments of the probability density of a quantum system in position and momentum spaces describe not only some fundamental and/or experimentally accessible quantities of the system, but also the entropic uncertainty measures of R\'enyi type which allow one to find the most relevant mathematical formalizations of the position-momentum Heisenberg's uncertainty principle, the entropic uncertainty relations. It is known that the solution of difficult three-dimensional problems can be very well approximated by a series development in 1/D1/D in similar systems with a non-standard dimensionality DD; moreover, several physical quantities of numerous atomic and molecular systems have been numerically shown to have values in the large-DD limit comparable to the corresponding ones provided by the three-dimensional numerical self-consistent field methods. The DD-dimensional hydrogenic atom is the main prototype of the physics of multidimensional many-electron systems. In this work we rigorously determine the leading term of the R\'enyi entropies of the DD-dimensional hydrogenic atom at the limit of large DD. As a byproduct, we show that our results saturate the known position-momentum R\'enyi-entropy-based uncertainty relations.Comment: Accepted in J. Math. Phy

    Chemical data assimilation estimates of continental U.S. ozone and nitrogen budgets during the Intercontinental Chemical Transport Experiment-North America

    Get PDF
    Global ozone analyses, based on assimilation of stratospheric profile and ozone column measurements, and NOy predictions from the Real-time Air Quality Modeling System (RAQMS) are used to estimate the ozone and NOy budget over the continental United States during the July-August 2004 Intercontinental Chemical Transport Experiment-North America (INTEX-A). Comparison with aircraft, satellite, surface, and ozonesonde measurements collected during INTEX-A show that RAQMS captures the main features of the global and continental U.S. distribution of tropospheric ozone, carbon monoxide, and NOy with reasonable fidelity. Assimilation of stratospheric profile and column ozone measurements is shown to have a positive impact on the RAQMS upper tropospheric/lower stratosphere ozone analyses, particularly during the period when SAGE III limb scattering measurements were available. Eulerian ozone and NOy budgets during INTEX-A show that the majority of the continental U.S. export occurs in the upper troposphere/lower stratosphere poleward of the tropopause break, a consequence of convergence of tropospheric and stratospheric air in this region. Continental U.S. photochemically produced ozone was found to be a minor component of the total ozone export, which was dominated by stratospheric ozone during INTEX-A. The unusually low photochemical ozone export is attributed to anomalously cold surface temperatures during the latter half of the INTEX-A mission, which resulted in net ozone loss during the first 2 weeks of August. Eulerian NOy budgets are shown to be very consistent with previously published estimates. The NOy export efficiency was estimated to be 24%, with NOx + PAN accounting for 54% of the total NOy export during INTEX-A. Copyright 2007 by the American Geophysical Union

    Multifrequency electrical impedance tomography with total variation regularization

    Get PDF
    Multifrequency electrical impedance tomography (MFEIT) reconstructs the distribution of conductivity by exploiting the dependence of tissue conductivity on frequency. MFEIT can be performed on a single instance of data, making it promising for applications such as stroke and cancer imaging, where it is not possible to obtain a baseline measurement of healthy tissue. A nonlinear MFEIT algorithm able to reconstruct the volume fraction distribution of tissue rather than conductivities has been developed previously. For each volume, the fraction of a certain tissue should be either 1 or 0; this implies that the sharp changes of the fractions, representing the boundaries of tissue, contain all the relevant information. However, these boundaries are blurred by traditional regularization methods using l2 norm. The total variation (TV) regularization can overcome this problem, but it is difficult to solve due to its non-differentiability. Because the fraction must be between 0 and 1, this imposes a constraint on the MFEIT method based on the fraction model. Therefore, a constrained optimization method capable of dealing with non-differentiable problems is required. Based on the primal and dual interior point method, we propose a new constrained TV regularized method to solve the fraction reconstruction problem. The noise performance of the new MFEIT method is analysed using simulations on a 2D cylindrical mesh. Convergence performance is also analysed through experiments using a cylindrical tank. Finally, simulations on an anatomically realistic head-shaped mesh are demonstrated. The proposed MFEIT method with TV regularization shows higher spatial resolution, particularly at the edges of the perturbation, and stronger noise robustness, and its image noise and shape error are 20% to 30% lower than the traditional fraction method
    • …
    corecore